S-Polynomials Irralated with Intervals

LaTeX on
$i$Polynomial
1\i\k + \j
2-\i\j + \k
3-\i\i\1 + \i\bar{\1}\i + \i\1\i + \bar{\1}
4\i\bar{\2}\i\1 + \i\1\i\2 - \i\1\bar{\2}\i + \2\1
5\i\2\i\1 - \i\2\bar{\1}\i + \i\bar{\1}\i\2 + \1\2
6\i\bar{\2}\i\1 - \i\bar{\2}\bar{\1}\i + \i\bar{\1}\i\bar{\2} + \1\bar{\2}
7\i\bar{\1}\i\1 + \i\1\i\1 - \i\1\bar{\1}\i + \1\1
8\i\bar{\1}\i\bar{\1} + \i\bar{\1}\i\1 - \i\bar{\1}\bar{\1}\i + \1\bar{\1}
9-\j\k + \i
10\j\i + \k
11\j\i\j\1 - \j\i\bar{\1}\j + \j\bar{\1}\j\i + \1\i
12-\j\j\1 + \j\bar{\1}\j + \j\1\j + \bar{\1}
13\j\bar{\2}\j\1 + \j\1\j\2 - \j\1\bar{\2}\j + \2\1
14\j\2\j\1 - \j\2\bar{\1}\j + \j\bar{\1}\j\2 + \1\2
15\j\bar{\2}\j\1 - \j\bar{\2}\bar{\1}\j + \j\bar{\1}\j\bar{\2} + \1\bar{\2}
16\j\bar{\1}\j\1 + \j\1\j\1 - \j\1\bar{\1}\j + \1\1
17\j\bar{\1}\j\bar{\1} + \j\bar{\1}\j\1 - \j\bar{\1}\bar{\1}\j + \1\bar{\1}
18-\k\i + \j
19\k\j + \i
20-\k\j\1\j - \k\i\1\i - 2 \cdot \k\bar{\1} - \k\1 + \1\k
21\k\i\k\1 - \k\i\bar{\1}\k + \k\bar{\1}\k\i + \1\i
22\k\j\k\1 - \k\j\bar{\1}\k + \k\bar{\1}\k\j + \1\j
23-\k\k\1 + \k\bar{\1}\k + \k\1\k + \bar{\1}
24\k\bar{\2}\k\1 + \k\1\k\2 - \k\1\bar{\2}\k + \2\1
25\k\2\k\1 - \k\2\bar{\1}\k + \k\bar{\1}\k\2 + \1\2
26\k\bar{\2}\k\1 - \k\bar{\2}\bar{\1}\k + \k\bar{\1}\k\bar{\2} + \1\bar{\2}
27\k\bar{\1}\k\1 + \k\1\k\1 - \k\1\bar{\1}\k + \1\1
28\k\bar{\1}\k\bar{\1} + \k\bar{\1}\k\1 - \k\bar{\1}\bar{\1}\k + \1\bar{\1}
29-\k\j - \i
30-\k\i - \i\k
31-\k\k + \i\i
32\i\i\j\1 - \i\i\bar{\1}\j + \i\bar{\1}\j\i - \k\1\i
33-\i\j\1 + \i\bar{\1}\j + \i\1\j - \k\bar{\1}
34\i\bar{\2}\j\1 + \i\1\j\2 - \i\1\bar{\2}\j - \k\2\1
35\i\2\j\1 - \i\2\bar{\1}\j + \i\bar{\1}\j\2 - \k\1\2
36\i\bar{\2}\j\1 - \i\bar{\2}\bar{\1}\j + \i\bar{\1}\j\bar{\2} - \k\1\bar{\2}
37\i\bar{\1}\j\1 + \i\1\j\1 - \i\1\bar{\1}\j - \k\1\1
38\i\bar{\1}\j\bar{\1} + \i\bar{\1}\j\1 - \i\bar{\1}\bar{\1}\j - \k\1\bar{\1}
39\k\i - \j
40\k\j + \j\k
41\k\k - \j\j
42-\j\i\1 + \j\bar{\1}\i + \j\1\i + \k\bar{\1}
43\j\bar{\2}\i\1 + \j\1\i\2 - \j\1\bar{\2}\i + \k\2\1
44\j\2\i\1 - \j\2\bar{\1}\i + \j\bar{\1}\i\2 + \k\1\2
45\j\bar{\2}\i\1 - \j\bar{\2}\bar{\1}\i + \j\bar{\1}\i\bar{\2} + \k\1\bar{\2}
46\j\bar{\1}\i\1 + \j\1\i\1 - \j\1\bar{\1}\i + \k\1\1
47\j\bar{\1}\i\bar{\1} + \j\bar{\1}\i\1 - \j\bar{\1}\bar{\1}\i + \k\1\bar{\1}
48-\i\k - \j
49-\j\i - \i\j
50\j\j - \i\i
51-\j\j\1\j - \j\i\1\i - \i\1\k - 2 \cdot \j\bar{\1} - \j\1
52\j\i\k\1 - \j\i\bar{\1}\k + \j\bar{\1}\k\i - \i\1\i
53\j\j\k\1 - \j\j\bar{\1}\k + \j\bar{\1}\k\j - \i\1\j
54-\j\k\1 + \j\bar{\1}\k + \j\1\k - \i\bar{\1}
55\j\bar{\2}\k\1 + \j\1\k\2 - \j\1\bar{\2}\k - \i\2\1
56\j\2\k\1 - \j\2\bar{\1}\k + \j\bar{\1}\k\2 - \i\1\2
57\j\bar{\2}\k\1 - \j\bar{\2}\bar{\1}\k + \j\bar{\1}\k\bar{\2} - \i\1\bar{\2}
58\j\bar{\1}\k\1 + \j\1\k\1 - \j\1\bar{\1}\k - \i\1\1
59\j\bar{\1}\k\bar{\1} + \j\bar{\1}\k\1 - \j\bar{\1}\bar{\1}\k - \i\1\bar{\1}
60\i\j - \k
61\k\i + \i\k
62\k\i\j\1 - \k\i\bar{\1}\j + \k\bar{\1}\j\i + \i\1\i
63-\k\j\1 + \k\bar{\1}\j + \k\1\j + \i\bar{\1}
64\k\bar{\2}\j\1 + \k\1\j\2 - \k\1\bar{\2}\j + \i\2\1
65\k\2\j\1 - \k\2\bar{\1}\j + \k\bar{\1}\j\2 + \i\1\2
66\k\bar{\2}\j\1 - \k\bar{\2}\bar{\1}\j + \k\bar{\1}\j\bar{\2} + \i\1\bar{\2}
67\k\bar{\1}\j\1 + \k\1\j\1 - \k\1\bar{\1}\j + \i\1\1
68\k\bar{\1}\j\bar{\1} + \k\bar{\1}\j\1 - \k\bar{\1}\bar{\1}\j + \i\1\bar{\1}
69-\j\i - \k
70-\k\j - \j\k
71-\k\i\1 + \k\bar{\1}\i + \k\1\i - \j\bar{\1}
72\k\bar{\2}\i\1 + \k\1\i\2 - \k\1\bar{\2}\i - \j\2\1
73\k\2\i\1 - \k\2\bar{\1}\i + \k\bar{\1}\i\2 - \j\1\2
74\k\bar{\2}\i\1 - \k\bar{\2}\bar{\1}\i + \k\bar{\1}\i\bar{\2} - \j\1\bar{\2}
75\k\bar{\1}\i\1 + \k\1\i\1 - \k\1\bar{\1}\i - \j\1\1
76\k\bar{\1}\i\bar{\1} + \k\bar{\1}\i\1 - \k\bar{\1}\bar{\1}\i - \j\1\bar{\1}
77\j\k - \i
78\j\i + \i\j
79-\i\j\1\j - \i\i\1\i + \j\1\k - 2 \cdot \i\bar{\1} - \i\1
80\i\i\k\1 - \i\i\bar{\1}\k + \i\bar{\1}\k\i + \j\1\i
81\i\j\k\1 - \i\j\bar{\1}\k + \i\bar{\1}\k\j + \j\1\j
82-\i\k\1 + \i\bar{\1}\k + \i\1\k + \j\bar{\1}
83\i\bar{\2}\k\1 + \i\1\k\2 - \i\1\bar{\2}\k + \j\2\1
84\i\2\k\1 - \i\2\bar{\1}\k + \i\bar{\1}\k\2 + \j\1\2
85\i\bar{\2}\k\1 - \i\bar{\2}\bar{\1}\k + \i\bar{\1}\k\bar{\2} + \j\1\bar{\2}
86\i\bar{\1}\k\1 + \i\1\k\1 - \i\1\bar{\1}\k + \j\1\1
87\i\bar{\1}\k\bar{\1} + \i\bar{\1}\k\1 - \i\bar{\1}\bar{\1}\k + \j\1\bar{\1}
88\j\1\j\k + \i\1\i\k - \k\1 + 2 \cdot \bar{\1}\k + \1\k
89\j\1\j\j + \i\1\i\j - \k\1\i + 2 \cdot \bar{\1}\j + \1\j
90\j\1\j\i + \i\1\i\i + \k\1\j + 2 \cdot \bar{\1}\i + \1\i
91-\k\1\k\1 + \k\1\bar{\1}\k + \k\1\1\k + \j\1\j\bar{\1} + \i\1\i\bar{\1} + 2 \cdot \bar{\1}\bar{\1} + \1\bar{\1}
92-\k\1\k\2 + \k\1\bar{\2}\k + \k\1\2\k + \j\1\j\bar{\2} + \i\1\i\bar{\2} + 2 \cdot \bar{\1}\bar{\2} + \1\bar{\2}
93-\k\2\k\1 + \k\2\bar{\1}\k + \k\2\1\k + \j\2\j\bar{\1} + \i\2\i\bar{\1} + 2 \cdot \bar{\2}\bar{\1} + \2\bar{\1}
94-\i\j\1\i + \i\bar{\1}\j\i - \bar{\1}\j\i\i - \j\1
95-\i\j\1\j + \i\bar{\1}\j\j - \bar{\1}\j\i\j + \j\1\k
96-\i\j\1\k + \i\bar{\1}\j\k - \bar{\1}\j\i\k - \j\1\j
97-\j\1\i\1 + \j\1\bar{\1}\i + \j\1\1\i - \i\j\1\bar{\1} + \i\bar{\1}\j\bar{\1} - \bar{\1}\j\i\bar{\1}
98-\j\1\i\2 + \j\1\bar{\2}\i + \j\1\2\i - \i\j\1\bar{\2} + \i\bar{\1}\j\bar{\2} - \bar{\1}\j\i\bar{\2}
99-\j\2\i\1 + \j\2\bar{\1}\i + \j\2\1\i - \i\j\2\bar{\1} + \i\bar{\2}\j\bar{\1} - \bar{\2}\j\i\bar{\1}
100-\i\k\1\i + \i\bar{\1}\k\i - \bar{\1}\k\i\i - \k\1
101-\i\k\1\j + \i\bar{\1}\k\j - \bar{\1}\k\i\j + \k\1\k
102-\i\k\1\k + \i\bar{\1}\k\k - \bar{\1}\k\i\k - \k\1\j
103-\k\1\i\1 + \k\1\bar{\1}\i + \k\1\1\i - \i\k\1\bar{\1} + \i\bar{\1}\k\bar{\1} - \bar{\1}\k\i\bar{\1}
104-\k\1\i\2 + \k\1\bar{\2}\i + \k\1\2\i - \i\k\1\bar{\2} + \i\bar{\1}\k\bar{\2} - \bar{\1}\k\i\bar{\2}
105-\k\2\i\1 + \k\2\bar{\1}\i + \k\2\1\i - \i\k\2\bar{\1} + \i\bar{\2}\k\bar{\1} - \bar{\2}\k\i\bar{\1}
106-\j\k\1\j + \j\bar{\1}\k\j - \bar{\1}\k\j\j - \k\1
107-\j\k\1\i + \j\bar{\1}\k\i - \bar{\1}\k\j\i - \k\1\k
108-\j\k\1\k + \j\bar{\1}\k\k - \bar{\1}\k\j\k + \k\1\i
109-\k\1\j\1 + \k\1\bar{\1}\j + \k\1\1\j - \j\k\1\bar{\1} + \j\bar{\1}\k\bar{\1} - \bar{\1}\k\j\bar{\1}
110-\k\1\j\2 + \k\1\bar{\2}\j + \k\1\2\j - \j\k\1\bar{\2} + \j\bar{\1}\k\bar{\2} - \bar{\1}\k\j\bar{\2}
111-\k\2\j\1 + \k\2\bar{\1}\j + \k\2\1\j - \j\k\2\bar{\1} + \j\bar{\2}\k\bar{\1} - \bar{\2}\k\j\bar{\1}
112\i\1\bar{\1} + \i\1\1 - \bar{\1}\i\1 - \1\i\1
113\i\bar{\1}\bar{\2} + \i\bar{\1}\2 - \bar{\2}\i\bar{\1} - \2\i\bar{\1}
114\i\1\bar{\2} + \i\1\2 - \bar{\2}\i\1 - \2\i\1
115\j\1\bar{\1} + \j\1\1 - \bar{\1}\j\1 - \1\j\1
116\j\bar{\1}\bar{\2} + \j\bar{\1}\2 - \bar{\2}\j\bar{\1} - \2\j\bar{\1}
117\j\1\bar{\2} + \j\1\2 - \bar{\2}\j\1 - \2\j\1
118\k\1\bar{\1} + \k\1\1 - \bar{\1}\k\1 - \1\k\1
119\k\bar{\1}\bar{\2} + \k\bar{\1}\2 - \bar{\2}\k\bar{\1} - \2\k\bar{\1}
120\k\1\bar{\2} + \k\1\2 - \bar{\2}\k\1 - \2\k\1
121-\bar{\2}\2\1 + \bar{\2}\bar{\1}\2 + \bar{\2}\1\2 - \2\bar{\2}\bar{\1}
122-\bar{\2}\2\bar{\1}\bar{\2} + \bar{\2}\2\1\2 + \bar{\2}\bar{\1}\bar{\2}\2 - \2\bar{\2}\2\1
123-\bar{\2}\bar{\1}\bar{\2}\bar{\1} + \bar{\2}\bar{\1}\2\1 + \bar{\2}\bar{\1}\bar{\1}\bar{\2} - \2\bar{\2}\1\bar{\1}
124-\bar{\2}\bar{\1}\bar{\2}\1 + \bar{\2}\1\2\1 + \bar{\2}\1\bar{\1}\bar{\2} - \2\bar{\2}\1\1
125-\bar{\3}\bar{\2}\bar{\3}\1 + \bar{\3}\1\3\2 + \bar{\3}\1\bar{\2}\bar{\3} - \3\bar{\3}\2\1
126\bar{\3}\bar{\2}\3\1 + \bar{\3}\bar{\2}\bar{\1}\bar{\3} - \bar{\3}\bar{\1}\bar{\3}\bar{\2} - \3\bar{\3}\1\bar{\2}
127\bar{\3}\2\3\1 + \bar{\3}\2\bar{\1}\bar{\3} - \bar{\3}\bar{\1}\bar{\3}\2 - \3\bar{\3}\1\2
128\bar{\2}\1\bar{\1} + \2\bar{\1}\1 - \bar{\1}\bar{\2}\1 - \bar{\1}\2\1
129-\bar{\3}\2\bar{\1} + \bar{\3}\bar{\1}\bar{\2} + \bar{\3}\bar{\1}\2 + \3\bar{\2}\bar{\1} - \bar{\2}\bar{\3}\bar{\1} - \bar{\2}\3\bar{\1}
130-\bar{\3}\2\1 + \bar{\3}\1\bar{\2} + \bar{\3}\1\2 + \3\bar{\2}\1 - \bar{\2}\bar{\3}\1 - \bar{\2}\3\1
131-\bar{\3}\2\1 + \bar{\3}\bar{\1}\2 + \bar{\3}\1\2 + \3\2\bar{\1} - \2\bar{\3}\bar{\1} - \2\3\bar{\1}
132-\bar{\3}\2\bar{\1}\bar{\2} + \bar{\3}\2\1\2 + \bar{\3}\bar{\1}\bar{\2}\2 + \3\2\2\1 - \2\bar{\3}\2\1 - \2\3\2\1
133-\bar{\3}\bar{\1}\bar{\2}\bar{\1} + \bar{\3}\bar{\1}\2\1 + \bar{\3}\bar{\1}\bar{\1}\bar{\2} + \3\2\1\bar{\1} - \2\bar{\3}\1\bar{\1} - \2\3\1\bar{\1}
134-\bar{\3}\bar{\1}\bar{\2}\1 + \bar{\3}\1\2\1 + \bar{\3}\1\bar{\1}\bar{\2} + \3\2\1\1 - \2\bar{\3}\1\1 - \2\3\1\1
135-\bar{\4}\bar{\2}\bar{\3}\1 + \bar{\4}\1\3\2 + \bar{\4}\1\bar{\2}\bar{\3} + \4\3\2\1 - \3\bar{\4}\2\1 - \3\4\2\1
136\bar{\4}\bar{\2}\3\1 + \bar{\4}\bar{\2}\bar{\1}\bar{\3} - \bar{\4}\bar{\1}\bar{\3}\bar{\2} + \4\3\1\bar{\2} - \3\bar{\4}\1\bar{\2} - \3\4\1\bar{\2}
137\bar{\4}\2\3\1 + \bar{\4}\2\bar{\1}\bar{\3} - \bar{\4}\bar{\1}\bar{\3}\2 + \4\3\1\2 - \3\bar{\4}\1\2 - \3\4\1\2
138\2\1\bar{\1} + \2\1\1 - \bar{\1}\2\1 - \1\2\1
139\3\bar{\1}\bar{\2} + \3\bar{\1}\2 - \bar{\2}\3\bar{\1} - \2\3\bar{\1}
140\3\1\bar{\2} + \3\1\2 - \bar{\2}\3\1 - \2\3\1
141-\i\bar{\1}\bar{\2}\bar{\1} + \i\bar{\1}\2\1 + \i\bar{\1}\bar{\1}\bar{\2} - \bar{\2}\i\1\bar{\1} - \1\i\2\bar{\1} + \1\bar{\2}\i\bar{\1}
142-\i\bar{\1}\bar{\2}\1 + \i\1\2\1 + \i\1\bar{\1}\bar{\2} - \bar{\2}\i\1\1 - \1\i\2\1 + \1\bar{\2}\i\1
143\i\bar{\2}\3\1 + \i\bar{\2}\bar{\1}\bar{\3} - \i\bar{\1}\bar{\3}\bar{\2} - \bar{\3}\i\1\bar{\2} - \1\i\3\bar{\2} + \1\bar{\3}\i\bar{\2}
144\i\2\3\1 + \i\2\bar{\1}\bar{\3} - \i\bar{\1}\bar{\3}\2 - \bar{\3}\i\1\2 - \1\i\3\2 + \1\bar{\3}\i\2
145-\i\3\2\1 + \i\3\bar{\1}\2 + \i\3\1\2 - \bar{\3}\i\2\bar{\1} - \2\i\3\bar{\1} + \2\bar{\3}\i\bar{\1}
146-\i\bar{\2}\bar{\3}\1 + \i\1\3\2 + \i\1\bar{\2}\bar{\3} - \bar{\3}\i\2\1 - \2\i\3\1 + \2\bar{\3}\i\1
147-\j\bar{\1}\bar{\2}\bar{\1} + \j\bar{\1}\2\1 + \j\bar{\1}\bar{\1}\bar{\2} - \bar{\2}\j\1\bar{\1} - \1\j\2\bar{\1} + \1\bar{\2}\j\bar{\1}
148-\j\bar{\1}\bar{\2}\1 + \j\1\2\1 + \j\1\bar{\1}\bar{\2} - \bar{\2}\j\1\1 - \1\j\2\1 + \1\bar{\2}\j\1
149\j\bar{\2}\3\1 + \j\bar{\2}\bar{\1}\bar{\3} - \j\bar{\1}\bar{\3}\bar{\2} - \bar{\3}\j\1\bar{\2} - \1\j\3\bar{\2} + \1\bar{\3}\j\bar{\2}
150\j\2\3\1 + \j\2\bar{\1}\bar{\3} - \j\bar{\1}\bar{\3}\2 - \bar{\3}\j\1\2 - \1\j\3\2 + \1\bar{\3}\j\2
151-\j\3\2\1 + \j\3\bar{\1}\2 + \j\3\1\2 - \bar{\3}\j\2\bar{\1} - \2\j\3\bar{\1} + \2\bar{\3}\j\bar{\1}
152-\j\bar{\2}\bar{\3}\1 + \j\1\3\2 + \j\1\bar{\2}\bar{\3} - \bar{\3}\j\2\1 - \2\j\3\1 + \2\bar{\3}\j\1
153-\k\bar{\1}\bar{\2}\bar{\1} + \k\bar{\1}\2\1 + \k\bar{\1}\bar{\1}\bar{\2} - \bar{\2}\k\1\bar{\1} - \1\k\2\bar{\1} + \1\bar{\2}\k\bar{\1}
154-\k\bar{\1}\bar{\2}\1 + \k\1\2\1 + \k\1\bar{\1}\bar{\2} - \bar{\2}\k\1\1 - \1\k\2\1 + \1\bar{\2}\k\1
155\k\bar{\2}\3\1 + \k\bar{\2}\bar{\1}\bar{\3} - \k\bar{\1}\bar{\3}\bar{\2} - \bar{\3}\k\1\bar{\2} - \1\k\3\bar{\2} + \1\bar{\3}\k\bar{\2}
156\k\2\3\1 + \k\2\bar{\1}\bar{\3} - \k\bar{\1}\bar{\3}\2 - \bar{\3}\k\1\2 - \1\k\3\2 + \1\bar{\3}\k\2
157-\k\3\2\1 + \k\3\bar{\1}\2 + \k\3\1\2 - \bar{\3}\k\2\bar{\1} - \2\k\3\bar{\1} + \2\bar{\3}\k\bar{\1}
158-\k\bar{\2}\bar{\3}\1 + \k\1\3\2 + \k\1\bar{\2}\bar{\3} - \bar{\3}\k\2\1 - \2\k\3\1 + \2\bar{\3}\k\1
159-\i\1\2\1 + \i\1\bar{\1}\2 + \i\1\1\2 - \2\i\1\bar{\1} + \2\bar{\1}\i\bar{\1} - \bar{\1}\i\2\bar{\1}
160-\i\1\3\2 + \i\1\bar{\2}\3 + \i\1\2\3 - \3\i\1\bar{\2} + \3\bar{\1}\i\bar{\2} - \bar{\1}\i\3\bar{\2}
161-\i\2\3\1 + \i\2\bar{\1}\3 + \i\2\1\3 - \3\i\2\bar{\1} + \3\bar{\2}\i\bar{\1} - \bar{\2}\i\3\bar{\1}
162-\j\1\2\1 + \j\1\bar{\1}\2 + \j\1\1\2 - \2\j\1\bar{\1} + \2\bar{\1}\j\bar{\1} - \bar{\1}\j\2\bar{\1}
163-\j\1\3\2 + \j\1\bar{\2}\3 + \j\1\2\3 - \3\j\1\bar{\2} + \3\bar{\1}\j\bar{\2} - \bar{\1}\j\3\bar{\2}
164-\j\2\3\1 + \j\2\bar{\1}\3 + \j\2\1\3 - \3\j\2\bar{\1} + \3\bar{\2}\j\bar{\1} - \bar{\2}\j\3\bar{\1}
165-\k\1\2\1 + \k\1\bar{\1}\2 + \k\1\1\2 - \2\k\1\bar{\1} + \2\bar{\1}\k\bar{\1} - \bar{\1}\k\2\bar{\1}
166-\k\1\3\2 + \k\1\bar{\2}\3 + \k\1\2\3 - \3\k\1\bar{\2} + \3\bar{\1}\k\bar{\2} - \bar{\1}\k\3\bar{\2}
167-\k\2\3\1 + \k\2\bar{\1}\3 + \k\2\1\3 - \3\k\2\bar{\1} + \3\bar{\2}\k\bar{\1} - \bar{\2}\k\3\bar{\1}
168\i\1\2\bar{\2} - \bar{\2}\i\1\2 + \bar{\2}\bar{\1}\i\2 - \bar{\1}\i\bar{\2}\2
169-\i\1\2\bar{\1} + \i\1\bar{\1}\bar{\2} + \i\1\bar{\1}\2 - \bar{\2}\i\1\bar{\1} + \bar{\2}\bar{\1}\i\bar{\1} - \bar{\1}\i\bar{\2}\bar{\1}
170-\i\1\2\1 + \i\1\1\bar{\2} + \i\1\1\2 - \bar{\2}\i\1\1 + \bar{\2}\bar{\1}\i\1 - \bar{\1}\i\bar{\2}\1
171-\i\1\3\bar{\2} + \i\1\bar{\2}\bar{\3} + \i\1\bar{\2}\3 - \bar{\3}\i\1\bar{\2} + \bar{\3}\bar{\1}\i\bar{\2} - \bar{\1}\i\bar{\3}\bar{\2}
172-\i\1\3\2 + \i\1\2\bar{\3} + \i\1\2\3 - \bar{\3}\i\1\2 + \bar{\3}\bar{\1}\i\2 - \bar{\1}\i\bar{\3}\2
173-\i\2\3\bar{\1} + \i\2\bar{\1}\bar{\3} + \i\2\bar{\1}\3 - \bar{\3}\i\2\bar{\1} + \bar{\3}\bar{\2}\i\bar{\1} - \bar{\2}\i\bar{\3}\bar{\1}
174-\i\2\3\1 + \i\2\1\bar{\3} + \i\2\1\3 - \bar{\3}\i\2\1 + \bar{\3}\bar{\2}\i\1 - \bar{\2}\i\bar{\3}\1
175\j\1\2\bar{\2} - \bar{\2}\j\1\2 + \bar{\2}\bar{\1}\j\2 - \bar{\1}\j\bar{\2}\2
176-\j\1\2\bar{\1} + \j\1\bar{\1}\bar{\2} + \j\1\bar{\1}\2 - \bar{\2}\j\1\bar{\1} + \bar{\2}\bar{\1}\j\bar{\1} - \bar{\1}\j\bar{\2}\bar{\1}
177-\j\1\2\1 + \j\1\1\bar{\2} + \j\1\1\2 - \bar{\2}\j\1\1 + \bar{\2}\bar{\1}\j\1 - \bar{\1}\j\bar{\2}\1
178-\j\1\3\bar{\2} + \j\1\bar{\2}\bar{\3} + \j\1\bar{\2}\3 - \bar{\3}\j\1\bar{\2} + \bar{\3}\bar{\1}\j\bar{\2} - \bar{\1}\j\bar{\3}\bar{\2}
179-\j\1\3\2 + \j\1\2\bar{\3} + \j\1\2\3 - \bar{\3}\j\1\2 + \bar{\3}\bar{\1}\j\2 - \bar{\1}\j\bar{\3}\2
180-\j\2\3\bar{\1} + \j\2\bar{\1}\bar{\3} + \j\2\bar{\1}\3 - \bar{\3}\j\2\bar{\1} + \bar{\3}\bar{\2}\j\bar{\1} - \bar{\2}\j\bar{\3}\bar{\1}
181-\j\2\3\1 + \j\2\1\bar{\3} + \j\2\1\3 - \bar{\3}\j\2\1 + \bar{\3}\bar{\2}\j\1 - \bar{\2}\j\bar{\3}\1
182\k\1\2\bar{\2} - \bar{\2}\k\1\2 + \bar{\2}\bar{\1}\k\2 - \bar{\1}\k\bar{\2}\2
183-\k\1\2\bar{\1} + \k\1\bar{\1}\bar{\2} + \k\1\bar{\1}\2 - \bar{\2}\k\1\bar{\1} + \bar{\2}\bar{\1}\k\bar{\1} - \bar{\1}\k\bar{\2}\bar{\1}
184-\k\1\2\1 + \k\1\1\bar{\2} + \k\1\1\2 - \bar{\2}\k\1\1 + \bar{\2}\bar{\1}\k\1 - \bar{\1}\k\bar{\2}\1
185-\k\1\3\bar{\2} + \k\1\bar{\2}\bar{\3} + \k\1\bar{\2}\3 - \bar{\3}\k\1\bar{\2} + \bar{\3}\bar{\1}\k\bar{\2} - \bar{\1}\k\bar{\3}\bar{\2}
186-\k\1\3\2 + \k\1\2\bar{\3} + \k\1\2\3 - \bar{\3}\k\1\2 + \bar{\3}\bar{\1}\k\2 - \bar{\1}\k\bar{\3}\2
187-\k\2\3\bar{\1} + \k\2\bar{\1}\bar{\3} + \k\2\bar{\1}\3 - \bar{\3}\k\2\bar{\1} + \bar{\3}\bar{\2}\k\bar{\1} - \bar{\2}\k\bar{\3}\bar{\1}
188-\k\2\3\1 + \k\2\1\bar{\3} + \k\2\1\3 - \bar{\3}\k\2\1 + \bar{\3}\bar{\2}\k\1 - \bar{\2}\k\bar{\3}\1
189-\i\2\2\1 + \i\2\bar{\1}\2 + \i\2\1\2 - \bar{\2}\i\2\bar{\1} - \2\i\2\bar{\1} + \2\bar{\2}\i\bar{\1}
190-\i\2\bar{\1}\bar{\2} + \i\2\1\2 + \i\bar{\1}\bar{\2}\2 - \bar{\2}\i\2\1 - \2\i\2\1 + \2\bar{\2}\i\1
191-\j\2\2\1 + \j\2\bar{\1}\2 + \j\2\1\2 - \bar{\2}\j\2\bar{\1} - \2\j\2\bar{\1} + \2\bar{\2}\j\bar{\1}
192-\j\2\bar{\1}\bar{\2} + \j\2\1\2 + \j\bar{\1}\bar{\2}\2 - \bar{\2}\j\2\1 - \2\j\2\1 + \2\bar{\2}\j\1
193-\k\2\2\1 + \k\2\bar{\1}\2 + \k\2\1\2 - \bar{\2}\k\2\bar{\1} - \2\k\2\bar{\1} + \2\bar{\2}\k\bar{\1}
194-\k\2\bar{\1}\bar{\2} + \k\2\1\2 + \k\bar{\1}\bar{\2}\2 - \bar{\2}\k\2\1 - \2\k\2\1 + \2\bar{\2}\k\1
195\i\1\1\bar{\1} - \bar{\1}\i\bar{\1}\1 - \bar{\1}\i\1\1 + \bar{\1}\bar{\1}\i\1
196-\i\2\2\bar{\1} + \i\2\bar{\1}\bar{\2} + \i\2\bar{\1}\2 - \bar{\2}\i\bar{\2}\bar{\1} - \bar{\2}\i\2\bar{\1} + \bar{\2}\bar{\2}\i\bar{\1}
197-\i\2\2\1 + \i\2\1\bar{\2} + \i\2\1\2 - \bar{\2}\i\bar{\2}\1 - \bar{\2}\i\2\1 + \bar{\2}\bar{\2}\i\1
198\j\1\1\bar{\1} - \bar{\1}\j\bar{\1}\1 - \bar{\1}\j\1\1 + \bar{\1}\bar{\1}\j\1
199-\j\2\2\bar{\1} + \j\2\bar{\1}\bar{\2} + \j\2\bar{\1}\2 - \bar{\2}\j\bar{\2}\bar{\1} - \bar{\2}\j\2\bar{\1} + \bar{\2}\bar{\2}\j\bar{\1}
200-\j\2\2\1 + \j\2\1\bar{\2} + \j\2\1\2 - \bar{\2}\j\bar{\2}\1 - \bar{\2}\j\2\1 + \bar{\2}\bar{\2}\j\1
201\k\1\1\bar{\1} - \bar{\1}\k\bar{\1}\1 - \bar{\1}\k\1\1 + \bar{\1}\bar{\1}\k\1
202-\k\2\2\bar{\1} + \k\2\bar{\1}\bar{\2} + \k\2\bar{\1}\2 - \bar{\2}\k\bar{\2}\bar{\1} - \bar{\2}\k\2\bar{\1} + \bar{\2}\bar{\2}\k\bar{\1}
203-\k\2\2\1 + \k\2\1\bar{\2} + \k\2\1\2 - \bar{\2}\k\bar{\2}\1 - \bar{\2}\k\2\1 + \bar{\2}\bar{\2}\k\1
204-\3\bar{\1}\bar{\2}\bar{\1} + \3\bar{\1}\2\1 + \3\bar{\1}\bar{\1}\bar{\2} + \bar{\2}\bar{\3}\1\bar{\1} - \1\3\2\bar{\1} - \1\bar{\2}\bar{\3}\bar{\1}
205-\3\bar{\1}\bar{\2}\1 + \3\1\2\1 + \3\1\bar{\1}\bar{\2} + \bar{\2}\bar{\3}\1\1 - \1\3\2\1 - \1\bar{\2}\bar{\3}\1
206\4\bar{\2}\3\1 + \4\bar{\2}\bar{\1}\bar{\3} - \4\bar{\1}\bar{\3}\bar{\2} + \bar{\3}\bar{\4}\1\bar{\2} - \1\4\3\bar{\2} - \1\bar{\3}\bar{\4}\bar{\2}
207\4\2\3\1 + \4\2\bar{\1}\bar{\3} - \4\bar{\1}\bar{\3}\2 + \bar{\3}\bar{\4}\1\2 - \1\4\3\2 - \1\bar{\3}\bar{\4}\2
208-\4\3\2\1 + \4\3\bar{\1}\2 + \4\3\1\2 + \bar{\3}\bar{\4}\2\bar{\1} - \2\4\3\bar{\1} - \2\bar{\3}\bar{\4}\bar{\1}
209-\4\bar{\2}\bar{\3}\1 + \4\1\3\2 + \4\1\bar{\2}\bar{\3} + \bar{\3}\bar{\4}\2\1 - \2\4\3\1 - \2\bar{\3}\bar{\4}\1
210\3\1\2\bar{\2} - \bar{\2}\3\1\2 - \bar{\2}\bar{\1}\bar{\3}\2 + \bar{\1}\bar{\3}\bar{\2}\2
211-\3\1\2\bar{\1} + \3\1\bar{\1}\bar{\2} + \3\1\bar{\1}\2 - \bar{\2}\3\1\bar{\1} - \bar{\2}\bar{\1}\bar{\3}\bar{\1} + \bar{\1}\bar{\3}\bar{\2}\bar{\1}
212-\3\1\2\1 + \3\1\1\bar{\2} + \3\1\1\2 - \bar{\2}\3\1\1 - \bar{\2}\bar{\1}\bar{\3}\1 + \bar{\1}\bar{\3}\bar{\2}\1
213-\4\1\3\bar{\2} + \4\1\bar{\2}\bar{\3} + \4\1\bar{\2}\3 - \bar{\3}\4\1\bar{\2} - \bar{\3}\bar{\1}\bar{\4}\bar{\2} + \bar{\1}\bar{\4}\bar{\3}\bar{\2}
214-\4\1\3\2 + \4\1\2\bar{\3} + \4\1\2\3 - \bar{\3}\4\1\2 - \bar{\3}\bar{\1}\bar{\4}\2 + \bar{\1}\bar{\4}\bar{\3}\2
215-\4\2\3\bar{\1} + \4\2\bar{\1}\bar{\3} + \4\2\bar{\1}\3 - \bar{\3}\4\2\bar{\1} - \bar{\3}\bar{\2}\bar{\4}\bar{\1} + \bar{\2}\bar{\4}\bar{\3}\bar{\1}
216-\4\2\3\1 + \4\2\1\bar{\3} + \4\2\1\3 - \bar{\3}\4\2\1 - \bar{\3}\bar{\2}\bar{\4}\1 + \bar{\2}\bar{\4}\bar{\3}\1
217-\3\1\2\1 + \3\1\bar{\1}\2 + \3\1\1\2 - \2\3\1\bar{\1} - \2\bar{\1}\bar{\3}\bar{\1} + \bar{\1}\bar{\3}\2\bar{\1}
218-\4\1\3\2 + \4\1\bar{\2}\3 + \4\1\2\3 - \3\4\1\bar{\2} - \3\bar{\1}\bar{\4}\bar{\2} + \bar{\1}\bar{\4}\3\bar{\2}
219-\4\2\3\1 + \4\2\bar{\1}\3 + \4\2\1\3 - \3\4\2\bar{\1} - \3\bar{\2}\bar{\4}\bar{\1} + \bar{\2}\bar{\4}\3\bar{\1}
220\2\bar{\1}\2\1 + \2\bar{\1}\bar{\1}\bar{\2} - \2\1\2\bar{\1} - \bar{\1}\bar{\2}\2\bar{\1}
221\2\1\bar{\1}\bar{\2} - \bar{\1}\bar{\2}\2\1
222\3\bar{\2}\3\1 + \3\bar{\2}\bar{\1}\bar{\3} - \3\1\3\bar{\2} - \bar{\1}\bar{\3}\3\bar{\2}
223\3\2\3\1 + \3\2\bar{\1}\bar{\3} - \3\1\3\2 - \bar{\1}\bar{\3}\3\2
224-\3\3\2\1 + \3\3\bar{\1}\2 + \3\3\1\2 + \3\bar{\2}\bar{\3}\bar{\1} - \3\2\3\bar{\1} - \bar{\2}\bar{\3}\3\bar{\1}
225-\3\2\3\1 + \3\1\3\2 + \3\1\bar{\2}\bar{\3} - \bar{\2}\bar{\3}\3\1
226\2\1\1\bar{\1} + \bar{\1}\bar{\2}\bar{\1}\1 - \bar{\1}\2\1\1 - \bar{\1}\bar{\1}\bar{\2}\1
227-\3\2\2\bar{\1} + \3\2\bar{\1}\bar{\2} + \3\2\bar{\1}\2 + \bar{\2}\bar{\3}\bar{\2}\bar{\1} - \bar{\2}\3\2\bar{\1} - \bar{\2}\bar{\2}\bar{\3}\bar{\1}
228-\3\2\2\1 + \3\2\1\bar{\2} + \3\2\1\2 + \bar{\2}\bar{\3}\bar{\2}\1 - \bar{\2}\3\2\1 - \bar{\2}\bar{\2}\bar{\3}\1
229-\3\2\2\1 + \3\2\bar{\1}\2 + \3\2\1\2 + \bar{\2}\bar{\3}\2\bar{\1} - \2\3\2\bar{\1} - \2\bar{\2}\bar{\3}\bar{\1}
230-\3\2\bar{\1}\bar{\2} + \3\2\1\2 + \3\bar{\1}\bar{\2}\2 + \bar{\2}\bar{\3}\2\1 - \2\3\2\1 - \2\bar{\2}\bar{\3}\1

Help

  1. Generate Tools: Click "Generate Reduction Tools" to create reduction tools before you do everything.

  2. Display Mode: Use the "LaTeX on" switch to toggle polynomial display. Excessive LaTeX can slow down rendering, so use it only when needed and switch back to plain text when done.

  3. Current Polynomial: The line below "Result Table" shows the polynomial being reduced. If multiple polynomials are selected from the "S-Polynomials Irralated with Intervals" table, only one is visible at a time.

  4. Reduction Controls:

    • "Step": Reduces the polynomial by one step.
    • "Continue": Reduces the polynomial until completion or if stuck. Displays the first 50 steps and every 1000th step by default (modifiable in the input box).
    • "Apply": Clears the current polynomial and apply the one in the input text box.
    • "Next": Clears the current polynomial and moves the next one in the queue forward.
  5. Handling Steps: If you want more detailed steps, use the "Step" button. Note that the "Result Table" has a row limit (e.g., 340 rows) to prevent crashes. Adjust the "Continue step" value if needed.

  6. Auto Reducing: The "Continue" button functions only when "Auto reducing" is on; otherwise, it acts like the "Step" button.

  7. Full Form Display: The "Full form" switch toggles between showing only the leading term or the full polynomial.

LaTeX on
No.StatusPolynomial

Result Table

f = 0
LaTeX on
Full form
Auto reducing
StepResult (For current step)Reduction Tool (Used from previous to current step)Lifted Reduction Tool (Actually used)