S-Polynomials Irralated with Intervals
| $i$ | Polynomial | |
|---|---|---|
| 1 | \i\k + \j | |
| 2 | -\i\j + \k | |
| 3 | -\i\i\1 + \i\bar{\1}\i + \i\1\i + \bar{\1} | |
| 4 | \i\bar{\2}\i\1 + \i\1\i\2 - \i\1\bar{\2}\i + \2\1 | |
| 5 | \i\2\i\1 - \i\2\bar{\1}\i + \i\bar{\1}\i\2 + \1\2 | |
| 6 | \i\bar{\2}\i\1 - \i\bar{\2}\bar{\1}\i + \i\bar{\1}\i\bar{\2} + \1\bar{\2} | |
| 7 | \i\bar{\1}\i\1 + \i\1\i\1 - \i\1\bar{\1}\i + \1\1 | |
| 8 | \i\bar{\1}\i\bar{\1} + \i\bar{\1}\i\1 - \i\bar{\1}\bar{\1}\i + \1\bar{\1} | |
| 9 | -\j\k + \i | |
| 10 | \j\i + \k | |
| 11 | \j\i\j\1 - \j\i\bar{\1}\j + \j\bar{\1}\j\i + \1\i | |
| 12 | -\j\j\1 + \j\bar{\1}\j + \j\1\j + \bar{\1} | |
| 13 | \j\bar{\2}\j\1 + \j\1\j\2 - \j\1\bar{\2}\j + \2\1 | |
| 14 | \j\2\j\1 - \j\2\bar{\1}\j + \j\bar{\1}\j\2 + \1\2 | |
| 15 | \j\bar{\2}\j\1 - \j\bar{\2}\bar{\1}\j + \j\bar{\1}\j\bar{\2} + \1\bar{\2} | |
| 16 | \j\bar{\1}\j\1 + \j\1\j\1 - \j\1\bar{\1}\j + \1\1 | |
| 17 | \j\bar{\1}\j\bar{\1} + \j\bar{\1}\j\1 - \j\bar{\1}\bar{\1}\j + \1\bar{\1} | |
| 18 | -\k\i + \j | |
| 19 | \k\j + \i | |
| 20 | -\k\j\1\j - \k\i\1\i - 2 \cdot \k\bar{\1} - \k\1 + \1\k | |
| 21 | \k\i\k\1 - \k\i\bar{\1}\k + \k\bar{\1}\k\i + \1\i | |
| 22 | \k\j\k\1 - \k\j\bar{\1}\k + \k\bar{\1}\k\j + \1\j | |
| 23 | -\k\k\1 + \k\bar{\1}\k + \k\1\k + \bar{\1} | |
| 24 | \k\bar{\2}\k\1 + \k\1\k\2 - \k\1\bar{\2}\k + \2\1 | |
| 25 | \k\2\k\1 - \k\2\bar{\1}\k + \k\bar{\1}\k\2 + \1\2 | |
| 26 | \k\bar{\2}\k\1 - \k\bar{\2}\bar{\1}\k + \k\bar{\1}\k\bar{\2} + \1\bar{\2} | |
| 27 | \k\bar{\1}\k\1 + \k\1\k\1 - \k\1\bar{\1}\k + \1\1 | |
| 28 | \k\bar{\1}\k\bar{\1} + \k\bar{\1}\k\1 - \k\bar{\1}\bar{\1}\k + \1\bar{\1} | |
| 29 | -\k\j - \i | |
| 30 | -\k\i - \i\k | |
| 31 | -\k\k + \i\i | |
| 32 | \i\i\j\1 - \i\i\bar{\1}\j + \i\bar{\1}\j\i - \k\1\i | |
| 33 | -\i\j\1 + \i\bar{\1}\j + \i\1\j - \k\bar{\1} | |
| 34 | \i\bar{\2}\j\1 + \i\1\j\2 - \i\1\bar{\2}\j - \k\2\1 | |
| 35 | \i\2\j\1 - \i\2\bar{\1}\j + \i\bar{\1}\j\2 - \k\1\2 | |
| 36 | \i\bar{\2}\j\1 - \i\bar{\2}\bar{\1}\j + \i\bar{\1}\j\bar{\2} - \k\1\bar{\2} | |
| 37 | \i\bar{\1}\j\1 + \i\1\j\1 - \i\1\bar{\1}\j - \k\1\1 | |
| 38 | \i\bar{\1}\j\bar{\1} + \i\bar{\1}\j\1 - \i\bar{\1}\bar{\1}\j - \k\1\bar{\1} | |
| 39 | \k\i - \j | |
| 40 | \k\j + \j\k | |
| 41 | \k\k - \j\j | |
| 42 | -\j\i\1 + \j\bar{\1}\i + \j\1\i + \k\bar{\1} | |
| 43 | \j\bar{\2}\i\1 + \j\1\i\2 - \j\1\bar{\2}\i + \k\2\1 | |
| 44 | \j\2\i\1 - \j\2\bar{\1}\i + \j\bar{\1}\i\2 + \k\1\2 | |
| 45 | \j\bar{\2}\i\1 - \j\bar{\2}\bar{\1}\i + \j\bar{\1}\i\bar{\2} + \k\1\bar{\2} | |
| 46 | \j\bar{\1}\i\1 + \j\1\i\1 - \j\1\bar{\1}\i + \k\1\1 | |
| 47 | \j\bar{\1}\i\bar{\1} + \j\bar{\1}\i\1 - \j\bar{\1}\bar{\1}\i + \k\1\bar{\1} | |
| 48 | -\i\k - \j | |
| 49 | -\j\i - \i\j | |
| 50 | \j\j - \i\i | |
| 51 | -\j\j\1\j - \j\i\1\i - \i\1\k - 2 \cdot \j\bar{\1} - \j\1 | |
| 52 | \j\i\k\1 - \j\i\bar{\1}\k + \j\bar{\1}\k\i - \i\1\i | |
| 53 | \j\j\k\1 - \j\j\bar{\1}\k + \j\bar{\1}\k\j - \i\1\j | |
| 54 | -\j\k\1 + \j\bar{\1}\k + \j\1\k - \i\bar{\1} | |
| 55 | \j\bar{\2}\k\1 + \j\1\k\2 - \j\1\bar{\2}\k - \i\2\1 | |
| 56 | \j\2\k\1 - \j\2\bar{\1}\k + \j\bar{\1}\k\2 - \i\1\2 | |
| 57 | \j\bar{\2}\k\1 - \j\bar{\2}\bar{\1}\k + \j\bar{\1}\k\bar{\2} - \i\1\bar{\2} | |
| 58 | \j\bar{\1}\k\1 + \j\1\k\1 - \j\1\bar{\1}\k - \i\1\1 | |
| 59 | \j\bar{\1}\k\bar{\1} + \j\bar{\1}\k\1 - \j\bar{\1}\bar{\1}\k - \i\1\bar{\1} | |
| 60 | \i\j - \k | |
| 61 | \k\i + \i\k | |
| 62 | \k\i\j\1 - \k\i\bar{\1}\j + \k\bar{\1}\j\i + \i\1\i | |
| 63 | -\k\j\1 + \k\bar{\1}\j + \k\1\j + \i\bar{\1} | |
| 64 | \k\bar{\2}\j\1 + \k\1\j\2 - \k\1\bar{\2}\j + \i\2\1 | |
| 65 | \k\2\j\1 - \k\2\bar{\1}\j + \k\bar{\1}\j\2 + \i\1\2 | |
| 66 | \k\bar{\2}\j\1 - \k\bar{\2}\bar{\1}\j + \k\bar{\1}\j\bar{\2} + \i\1\bar{\2} | |
| 67 | \k\bar{\1}\j\1 + \k\1\j\1 - \k\1\bar{\1}\j + \i\1\1 | |
| 68 | \k\bar{\1}\j\bar{\1} + \k\bar{\1}\j\1 - \k\bar{\1}\bar{\1}\j + \i\1\bar{\1} | |
| 69 | -\j\i - \k | |
| 70 | -\k\j - \j\k | |
| 71 | -\k\i\1 + \k\bar{\1}\i + \k\1\i - \j\bar{\1} | |
| 72 | \k\bar{\2}\i\1 + \k\1\i\2 - \k\1\bar{\2}\i - \j\2\1 | |
| 73 | \k\2\i\1 - \k\2\bar{\1}\i + \k\bar{\1}\i\2 - \j\1\2 | |
| 74 | \k\bar{\2}\i\1 - \k\bar{\2}\bar{\1}\i + \k\bar{\1}\i\bar{\2} - \j\1\bar{\2} | |
| 75 | \k\bar{\1}\i\1 + \k\1\i\1 - \k\1\bar{\1}\i - \j\1\1 | |
| 76 | \k\bar{\1}\i\bar{\1} + \k\bar{\1}\i\1 - \k\bar{\1}\bar{\1}\i - \j\1\bar{\1} | |
| 77 | \j\k - \i | |
| 78 | \j\i + \i\j | |
| 79 | -\i\j\1\j - \i\i\1\i + \j\1\k - 2 \cdot \i\bar{\1} - \i\1 | |
| 80 | \i\i\k\1 - \i\i\bar{\1}\k + \i\bar{\1}\k\i + \j\1\i | |
| 81 | \i\j\k\1 - \i\j\bar{\1}\k + \i\bar{\1}\k\j + \j\1\j | |
| 82 | -\i\k\1 + \i\bar{\1}\k + \i\1\k + \j\bar{\1} | |
| 83 | \i\bar{\2}\k\1 + \i\1\k\2 - \i\1\bar{\2}\k + \j\2\1 | |
| 84 | \i\2\k\1 - \i\2\bar{\1}\k + \i\bar{\1}\k\2 + \j\1\2 | |
| 85 | \i\bar{\2}\k\1 - \i\bar{\2}\bar{\1}\k + \i\bar{\1}\k\bar{\2} + \j\1\bar{\2} | |
| 86 | \i\bar{\1}\k\1 + \i\1\k\1 - \i\1\bar{\1}\k + \j\1\1 | |
| 87 | \i\bar{\1}\k\bar{\1} + \i\bar{\1}\k\1 - \i\bar{\1}\bar{\1}\k + \j\1\bar{\1} | |
| 88 | \j\1\j\k + \i\1\i\k - \k\1 + 2 \cdot \bar{\1}\k + \1\k | |
| 89 | \j\1\j\j + \i\1\i\j - \k\1\i + 2 \cdot \bar{\1}\j + \1\j | |
| 90 | \j\1\j\i + \i\1\i\i + \k\1\j + 2 \cdot \bar{\1}\i + \1\i | |
| 91 | -\k\1\k\1 + \k\1\bar{\1}\k + \k\1\1\k + \j\1\j\bar{\1} + \i\1\i\bar{\1} + 2 \cdot \bar{\1}\bar{\1} + \1\bar{\1} | |
| 92 | -\k\1\k\2 + \k\1\bar{\2}\k + \k\1\2\k + \j\1\j\bar{\2} + \i\1\i\bar{\2} + 2 \cdot \bar{\1}\bar{\2} + \1\bar{\2} | |
| 93 | -\k\2\k\1 + \k\2\bar{\1}\k + \k\2\1\k + \j\2\j\bar{\1} + \i\2\i\bar{\1} + 2 \cdot \bar{\2}\bar{\1} + \2\bar{\1} | |
| 94 | -\i\j\1\i + \i\bar{\1}\j\i - \bar{\1}\j\i\i - \j\1 | |
| 95 | -\i\j\1\j + \i\bar{\1}\j\j - \bar{\1}\j\i\j + \j\1\k | |
| 96 | -\i\j\1\k + \i\bar{\1}\j\k - \bar{\1}\j\i\k - \j\1\j | |
| 97 | -\j\1\i\1 + \j\1\bar{\1}\i + \j\1\1\i - \i\j\1\bar{\1} + \i\bar{\1}\j\bar{\1} - \bar{\1}\j\i\bar{\1} | |
| 98 | -\j\1\i\2 + \j\1\bar{\2}\i + \j\1\2\i - \i\j\1\bar{\2} + \i\bar{\1}\j\bar{\2} - \bar{\1}\j\i\bar{\2} | |
| 99 | -\j\2\i\1 + \j\2\bar{\1}\i + \j\2\1\i - \i\j\2\bar{\1} + \i\bar{\2}\j\bar{\1} - \bar{\2}\j\i\bar{\1} | |
| 100 | -\i\k\1\i + \i\bar{\1}\k\i - \bar{\1}\k\i\i - \k\1 | |
| 101 | -\i\k\1\j + \i\bar{\1}\k\j - \bar{\1}\k\i\j + \k\1\k | |
| 102 | -\i\k\1\k + \i\bar{\1}\k\k - \bar{\1}\k\i\k - \k\1\j | |
| 103 | -\k\1\i\1 + \k\1\bar{\1}\i + \k\1\1\i - \i\k\1\bar{\1} + \i\bar{\1}\k\bar{\1} - \bar{\1}\k\i\bar{\1} | |
| 104 | -\k\1\i\2 + \k\1\bar{\2}\i + \k\1\2\i - \i\k\1\bar{\2} + \i\bar{\1}\k\bar{\2} - \bar{\1}\k\i\bar{\2} | |
| 105 | -\k\2\i\1 + \k\2\bar{\1}\i + \k\2\1\i - \i\k\2\bar{\1} + \i\bar{\2}\k\bar{\1} - \bar{\2}\k\i\bar{\1} | |
| 106 | -\j\k\1\j + \j\bar{\1}\k\j - \bar{\1}\k\j\j - \k\1 | |
| 107 | -\j\k\1\i + \j\bar{\1}\k\i - \bar{\1}\k\j\i - \k\1\k | |
| 108 | -\j\k\1\k + \j\bar{\1}\k\k - \bar{\1}\k\j\k + \k\1\i | |
| 109 | -\k\1\j\1 + \k\1\bar{\1}\j + \k\1\1\j - \j\k\1\bar{\1} + \j\bar{\1}\k\bar{\1} - \bar{\1}\k\j\bar{\1} | |
| 110 | -\k\1\j\2 + \k\1\bar{\2}\j + \k\1\2\j - \j\k\1\bar{\2} + \j\bar{\1}\k\bar{\2} - \bar{\1}\k\j\bar{\2} | |
| 111 | -\k\2\j\1 + \k\2\bar{\1}\j + \k\2\1\j - \j\k\2\bar{\1} + \j\bar{\2}\k\bar{\1} - \bar{\2}\k\j\bar{\1} | |
| 112 | \i\1\bar{\1} + \i\1\1 - \bar{\1}\i\1 - \1\i\1 | |
| 113 | \i\bar{\1}\bar{\2} + \i\bar{\1}\2 - \bar{\2}\i\bar{\1} - \2\i\bar{\1} | |
| 114 | \i\1\bar{\2} + \i\1\2 - \bar{\2}\i\1 - \2\i\1 | |
| 115 | \j\1\bar{\1} + \j\1\1 - \bar{\1}\j\1 - \1\j\1 | |
| 116 | \j\bar{\1}\bar{\2} + \j\bar{\1}\2 - \bar{\2}\j\bar{\1} - \2\j\bar{\1} | |
| 117 | \j\1\bar{\2} + \j\1\2 - \bar{\2}\j\1 - \2\j\1 | |
| 118 | \k\1\bar{\1} + \k\1\1 - \bar{\1}\k\1 - \1\k\1 | |
| 119 | \k\bar{\1}\bar{\2} + \k\bar{\1}\2 - \bar{\2}\k\bar{\1} - \2\k\bar{\1} | |
| 120 | \k\1\bar{\2} + \k\1\2 - \bar{\2}\k\1 - \2\k\1 | |
| 121 | -\bar{\2}\2\1 + \bar{\2}\bar{\1}\2 + \bar{\2}\1\2 - \2\bar{\2}\bar{\1} | |
| 122 | -\bar{\2}\2\bar{\1}\bar{\2} + \bar{\2}\2\1\2 + \bar{\2}\bar{\1}\bar{\2}\2 - \2\bar{\2}\2\1 | |
| 123 | -\bar{\2}\bar{\1}\bar{\2}\bar{\1} + \bar{\2}\bar{\1}\2\1 + \bar{\2}\bar{\1}\bar{\1}\bar{\2} - \2\bar{\2}\1\bar{\1} | |
| 124 | -\bar{\2}\bar{\1}\bar{\2}\1 + \bar{\2}\1\2\1 + \bar{\2}\1\bar{\1}\bar{\2} - \2\bar{\2}\1\1 | |
| 125 | -\bar{\3}\bar{\2}\bar{\3}\1 + \bar{\3}\1\3\2 + \bar{\3}\1\bar{\2}\bar{\3} - \3\bar{\3}\2\1 | |
| 126 | \bar{\3}\bar{\2}\3\1 + \bar{\3}\bar{\2}\bar{\1}\bar{\3} - \bar{\3}\bar{\1}\bar{\3}\bar{\2} - \3\bar{\3}\1\bar{\2} | |
| 127 | \bar{\3}\2\3\1 + \bar{\3}\2\bar{\1}\bar{\3} - \bar{\3}\bar{\1}\bar{\3}\2 - \3\bar{\3}\1\2 | |
| 128 | \bar{\2}\1\bar{\1} + \2\bar{\1}\1 - \bar{\1}\bar{\2}\1 - \bar{\1}\2\1 | |
| 129 | -\bar{\3}\2\bar{\1} + \bar{\3}\bar{\1}\bar{\2} + \bar{\3}\bar{\1}\2 + \3\bar{\2}\bar{\1} - \bar{\2}\bar{\3}\bar{\1} - \bar{\2}\3\bar{\1} | |
| 130 | -\bar{\3}\2\1 + \bar{\3}\1\bar{\2} + \bar{\3}\1\2 + \3\bar{\2}\1 - \bar{\2}\bar{\3}\1 - \bar{\2}\3\1 | |
| 131 | -\bar{\3}\2\1 + \bar{\3}\bar{\1}\2 + \bar{\3}\1\2 + \3\2\bar{\1} - \2\bar{\3}\bar{\1} - \2\3\bar{\1} | |
| 132 | -\bar{\3}\2\bar{\1}\bar{\2} + \bar{\3}\2\1\2 + \bar{\3}\bar{\1}\bar{\2}\2 + \3\2\2\1 - \2\bar{\3}\2\1 - \2\3\2\1 | |
| 133 | -\bar{\3}\bar{\1}\bar{\2}\bar{\1} + \bar{\3}\bar{\1}\2\1 + \bar{\3}\bar{\1}\bar{\1}\bar{\2} + \3\2\1\bar{\1} - \2\bar{\3}\1\bar{\1} - \2\3\1\bar{\1} | |
| 134 | -\bar{\3}\bar{\1}\bar{\2}\1 + \bar{\3}\1\2\1 + \bar{\3}\1\bar{\1}\bar{\2} + \3\2\1\1 - \2\bar{\3}\1\1 - \2\3\1\1 | |
| 135 | -\bar{\4}\bar{\2}\bar{\3}\1 + \bar{\4}\1\3\2 + \bar{\4}\1\bar{\2}\bar{\3} + \4\3\2\1 - \3\bar{\4}\2\1 - \3\4\2\1 | |
| 136 | \bar{\4}\bar{\2}\3\1 + \bar{\4}\bar{\2}\bar{\1}\bar{\3} - \bar{\4}\bar{\1}\bar{\3}\bar{\2} + \4\3\1\bar{\2} - \3\bar{\4}\1\bar{\2} - \3\4\1\bar{\2} | |
| 137 | \bar{\4}\2\3\1 + \bar{\4}\2\bar{\1}\bar{\3} - \bar{\4}\bar{\1}\bar{\3}\2 + \4\3\1\2 - \3\bar{\4}\1\2 - \3\4\1\2 | |
| 138 | \2\1\bar{\1} + \2\1\1 - \bar{\1}\2\1 - \1\2\1 | |
| 139 | \3\bar{\1}\bar{\2} + \3\bar{\1}\2 - \bar{\2}\3\bar{\1} - \2\3\bar{\1} | |
| 140 | \3\1\bar{\2} + \3\1\2 - \bar{\2}\3\1 - \2\3\1 | |
| 141 | -\i\bar{\1}\bar{\2}\bar{\1} + \i\bar{\1}\2\1 + \i\bar{\1}\bar{\1}\bar{\2} - \bar{\2}\i\1\bar{\1} - \1\i\2\bar{\1} + \1\bar{\2}\i\bar{\1} | |
| 142 | -\i\bar{\1}\bar{\2}\1 + \i\1\2\1 + \i\1\bar{\1}\bar{\2} - \bar{\2}\i\1\1 - \1\i\2\1 + \1\bar{\2}\i\1 | |
| 143 | \i\bar{\2}\3\1 + \i\bar{\2}\bar{\1}\bar{\3} - \i\bar{\1}\bar{\3}\bar{\2} - \bar{\3}\i\1\bar{\2} - \1\i\3\bar{\2} + \1\bar{\3}\i\bar{\2} | |
| 144 | \i\2\3\1 + \i\2\bar{\1}\bar{\3} - \i\bar{\1}\bar{\3}\2 - \bar{\3}\i\1\2 - \1\i\3\2 + \1\bar{\3}\i\2 | |
| 145 | -\i\3\2\1 + \i\3\bar{\1}\2 + \i\3\1\2 - \bar{\3}\i\2\bar{\1} - \2\i\3\bar{\1} + \2\bar{\3}\i\bar{\1} | |
| 146 | -\i\bar{\2}\bar{\3}\1 + \i\1\3\2 + \i\1\bar{\2}\bar{\3} - \bar{\3}\i\2\1 - \2\i\3\1 + \2\bar{\3}\i\1 | |
| 147 | -\j\bar{\1}\bar{\2}\bar{\1} + \j\bar{\1}\2\1 + \j\bar{\1}\bar{\1}\bar{\2} - \bar{\2}\j\1\bar{\1} - \1\j\2\bar{\1} + \1\bar{\2}\j\bar{\1} | |
| 148 | -\j\bar{\1}\bar{\2}\1 + \j\1\2\1 + \j\1\bar{\1}\bar{\2} - \bar{\2}\j\1\1 - \1\j\2\1 + \1\bar{\2}\j\1 | |
| 149 | \j\bar{\2}\3\1 + \j\bar{\2}\bar{\1}\bar{\3} - \j\bar{\1}\bar{\3}\bar{\2} - \bar{\3}\j\1\bar{\2} - \1\j\3\bar{\2} + \1\bar{\3}\j\bar{\2} | |
| 150 | \j\2\3\1 + \j\2\bar{\1}\bar{\3} - \j\bar{\1}\bar{\3}\2 - \bar{\3}\j\1\2 - \1\j\3\2 + \1\bar{\3}\j\2 | |
| 151 | -\j\3\2\1 + \j\3\bar{\1}\2 + \j\3\1\2 - \bar{\3}\j\2\bar{\1} - \2\j\3\bar{\1} + \2\bar{\3}\j\bar{\1} | |
| 152 | -\j\bar{\2}\bar{\3}\1 + \j\1\3\2 + \j\1\bar{\2}\bar{\3} - \bar{\3}\j\2\1 - \2\j\3\1 + \2\bar{\3}\j\1 | |
| 153 | -\k\bar{\1}\bar{\2}\bar{\1} + \k\bar{\1}\2\1 + \k\bar{\1}\bar{\1}\bar{\2} - \bar{\2}\k\1\bar{\1} - \1\k\2\bar{\1} + \1\bar{\2}\k\bar{\1} | |
| 154 | -\k\bar{\1}\bar{\2}\1 + \k\1\2\1 + \k\1\bar{\1}\bar{\2} - \bar{\2}\k\1\1 - \1\k\2\1 + \1\bar{\2}\k\1 | |
| 155 | \k\bar{\2}\3\1 + \k\bar{\2}\bar{\1}\bar{\3} - \k\bar{\1}\bar{\3}\bar{\2} - \bar{\3}\k\1\bar{\2} - \1\k\3\bar{\2} + \1\bar{\3}\k\bar{\2} | |
| 156 | \k\2\3\1 + \k\2\bar{\1}\bar{\3} - \k\bar{\1}\bar{\3}\2 - \bar{\3}\k\1\2 - \1\k\3\2 + \1\bar{\3}\k\2 | |
| 157 | -\k\3\2\1 + \k\3\bar{\1}\2 + \k\3\1\2 - \bar{\3}\k\2\bar{\1} - \2\k\3\bar{\1} + \2\bar{\3}\k\bar{\1} | |
| 158 | -\k\bar{\2}\bar{\3}\1 + \k\1\3\2 + \k\1\bar{\2}\bar{\3} - \bar{\3}\k\2\1 - \2\k\3\1 + \2\bar{\3}\k\1 | |
| 159 | -\i\1\2\1 + \i\1\bar{\1}\2 + \i\1\1\2 - \2\i\1\bar{\1} + \2\bar{\1}\i\bar{\1} - \bar{\1}\i\2\bar{\1} | |
| 160 | -\i\1\3\2 + \i\1\bar{\2}\3 + \i\1\2\3 - \3\i\1\bar{\2} + \3\bar{\1}\i\bar{\2} - \bar{\1}\i\3\bar{\2} | |
| 161 | -\i\2\3\1 + \i\2\bar{\1}\3 + \i\2\1\3 - \3\i\2\bar{\1} + \3\bar{\2}\i\bar{\1} - \bar{\2}\i\3\bar{\1} | |
| 162 | -\j\1\2\1 + \j\1\bar{\1}\2 + \j\1\1\2 - \2\j\1\bar{\1} + \2\bar{\1}\j\bar{\1} - \bar{\1}\j\2\bar{\1} | |
| 163 | -\j\1\3\2 + \j\1\bar{\2}\3 + \j\1\2\3 - \3\j\1\bar{\2} + \3\bar{\1}\j\bar{\2} - \bar{\1}\j\3\bar{\2} | |
| 164 | -\j\2\3\1 + \j\2\bar{\1}\3 + \j\2\1\3 - \3\j\2\bar{\1} + \3\bar{\2}\j\bar{\1} - \bar{\2}\j\3\bar{\1} | |
| 165 | -\k\1\2\1 + \k\1\bar{\1}\2 + \k\1\1\2 - \2\k\1\bar{\1} + \2\bar{\1}\k\bar{\1} - \bar{\1}\k\2\bar{\1} | |
| 166 | -\k\1\3\2 + \k\1\bar{\2}\3 + \k\1\2\3 - \3\k\1\bar{\2} + \3\bar{\1}\k\bar{\2} - \bar{\1}\k\3\bar{\2} | |
| 167 | -\k\2\3\1 + \k\2\bar{\1}\3 + \k\2\1\3 - \3\k\2\bar{\1} + \3\bar{\2}\k\bar{\1} - \bar{\2}\k\3\bar{\1} | |
| 168 | \i\1\2\bar{\2} - \bar{\2}\i\1\2 + \bar{\2}\bar{\1}\i\2 - \bar{\1}\i\bar{\2}\2 | |
| 169 | -\i\1\2\bar{\1} + \i\1\bar{\1}\bar{\2} + \i\1\bar{\1}\2 - \bar{\2}\i\1\bar{\1} + \bar{\2}\bar{\1}\i\bar{\1} - \bar{\1}\i\bar{\2}\bar{\1} | |
| 170 | -\i\1\2\1 + \i\1\1\bar{\2} + \i\1\1\2 - \bar{\2}\i\1\1 + \bar{\2}\bar{\1}\i\1 - \bar{\1}\i\bar{\2}\1 | |
| 171 | -\i\1\3\bar{\2} + \i\1\bar{\2}\bar{\3} + \i\1\bar{\2}\3 - \bar{\3}\i\1\bar{\2} + \bar{\3}\bar{\1}\i\bar{\2} - \bar{\1}\i\bar{\3}\bar{\2} | |
| 172 | -\i\1\3\2 + \i\1\2\bar{\3} + \i\1\2\3 - \bar{\3}\i\1\2 + \bar{\3}\bar{\1}\i\2 - \bar{\1}\i\bar{\3}\2 | |
| 173 | -\i\2\3\bar{\1} + \i\2\bar{\1}\bar{\3} + \i\2\bar{\1}\3 - \bar{\3}\i\2\bar{\1} + \bar{\3}\bar{\2}\i\bar{\1} - \bar{\2}\i\bar{\3}\bar{\1} | |
| 174 | -\i\2\3\1 + \i\2\1\bar{\3} + \i\2\1\3 - \bar{\3}\i\2\1 + \bar{\3}\bar{\2}\i\1 - \bar{\2}\i\bar{\3}\1 | |
| 175 | \j\1\2\bar{\2} - \bar{\2}\j\1\2 + \bar{\2}\bar{\1}\j\2 - \bar{\1}\j\bar{\2}\2 | |
| 176 | -\j\1\2\bar{\1} + \j\1\bar{\1}\bar{\2} + \j\1\bar{\1}\2 - \bar{\2}\j\1\bar{\1} + \bar{\2}\bar{\1}\j\bar{\1} - \bar{\1}\j\bar{\2}\bar{\1} | |
| 177 | -\j\1\2\1 + \j\1\1\bar{\2} + \j\1\1\2 - \bar{\2}\j\1\1 + \bar{\2}\bar{\1}\j\1 - \bar{\1}\j\bar{\2}\1 | |
| 178 | -\j\1\3\bar{\2} + \j\1\bar{\2}\bar{\3} + \j\1\bar{\2}\3 - \bar{\3}\j\1\bar{\2} + \bar{\3}\bar{\1}\j\bar{\2} - \bar{\1}\j\bar{\3}\bar{\2} | |
| 179 | -\j\1\3\2 + \j\1\2\bar{\3} + \j\1\2\3 - \bar{\3}\j\1\2 + \bar{\3}\bar{\1}\j\2 - \bar{\1}\j\bar{\3}\2 | |
| 180 | -\j\2\3\bar{\1} + \j\2\bar{\1}\bar{\3} + \j\2\bar{\1}\3 - \bar{\3}\j\2\bar{\1} + \bar{\3}\bar{\2}\j\bar{\1} - \bar{\2}\j\bar{\3}\bar{\1} | |
| 181 | -\j\2\3\1 + \j\2\1\bar{\3} + \j\2\1\3 - \bar{\3}\j\2\1 + \bar{\3}\bar{\2}\j\1 - \bar{\2}\j\bar{\3}\1 | |
| 182 | \k\1\2\bar{\2} - \bar{\2}\k\1\2 + \bar{\2}\bar{\1}\k\2 - \bar{\1}\k\bar{\2}\2 | |
| 183 | -\k\1\2\bar{\1} + \k\1\bar{\1}\bar{\2} + \k\1\bar{\1}\2 - \bar{\2}\k\1\bar{\1} + \bar{\2}\bar{\1}\k\bar{\1} - \bar{\1}\k\bar{\2}\bar{\1} | |
| 184 | -\k\1\2\1 + \k\1\1\bar{\2} + \k\1\1\2 - \bar{\2}\k\1\1 + \bar{\2}\bar{\1}\k\1 - \bar{\1}\k\bar{\2}\1 | |
| 185 | -\k\1\3\bar{\2} + \k\1\bar{\2}\bar{\3} + \k\1\bar{\2}\3 - \bar{\3}\k\1\bar{\2} + \bar{\3}\bar{\1}\k\bar{\2} - \bar{\1}\k\bar{\3}\bar{\2} | |
| 186 | -\k\1\3\2 + \k\1\2\bar{\3} + \k\1\2\3 - \bar{\3}\k\1\2 + \bar{\3}\bar{\1}\k\2 - \bar{\1}\k\bar{\3}\2 | |
| 187 | -\k\2\3\bar{\1} + \k\2\bar{\1}\bar{\3} + \k\2\bar{\1}\3 - \bar{\3}\k\2\bar{\1} + \bar{\3}\bar{\2}\k\bar{\1} - \bar{\2}\k\bar{\3}\bar{\1} | |
| 188 | -\k\2\3\1 + \k\2\1\bar{\3} + \k\2\1\3 - \bar{\3}\k\2\1 + \bar{\3}\bar{\2}\k\1 - \bar{\2}\k\bar{\3}\1 | |
| 189 | -\i\2\2\1 + \i\2\bar{\1}\2 + \i\2\1\2 - \bar{\2}\i\2\bar{\1} - \2\i\2\bar{\1} + \2\bar{\2}\i\bar{\1} | |
| 190 | -\i\2\bar{\1}\bar{\2} + \i\2\1\2 + \i\bar{\1}\bar{\2}\2 - \bar{\2}\i\2\1 - \2\i\2\1 + \2\bar{\2}\i\1 | |
| 191 | -\j\2\2\1 + \j\2\bar{\1}\2 + \j\2\1\2 - \bar{\2}\j\2\bar{\1} - \2\j\2\bar{\1} + \2\bar{\2}\j\bar{\1} | |
| 192 | -\j\2\bar{\1}\bar{\2} + \j\2\1\2 + \j\bar{\1}\bar{\2}\2 - \bar{\2}\j\2\1 - \2\j\2\1 + \2\bar{\2}\j\1 | |
| 193 | -\k\2\2\1 + \k\2\bar{\1}\2 + \k\2\1\2 - \bar{\2}\k\2\bar{\1} - \2\k\2\bar{\1} + \2\bar{\2}\k\bar{\1} | |
| 194 | -\k\2\bar{\1}\bar{\2} + \k\2\1\2 + \k\bar{\1}\bar{\2}\2 - \bar{\2}\k\2\1 - \2\k\2\1 + \2\bar{\2}\k\1 | |
| 195 | \i\1\1\bar{\1} - \bar{\1}\i\bar{\1}\1 - \bar{\1}\i\1\1 + \bar{\1}\bar{\1}\i\1 | |
| 196 | -\i\2\2\bar{\1} + \i\2\bar{\1}\bar{\2} + \i\2\bar{\1}\2 - \bar{\2}\i\bar{\2}\bar{\1} - \bar{\2}\i\2\bar{\1} + \bar{\2}\bar{\2}\i\bar{\1} | |
| 197 | -\i\2\2\1 + \i\2\1\bar{\2} + \i\2\1\2 - \bar{\2}\i\bar{\2}\1 - \bar{\2}\i\2\1 + \bar{\2}\bar{\2}\i\1 | |
| 198 | \j\1\1\bar{\1} - \bar{\1}\j\bar{\1}\1 - \bar{\1}\j\1\1 + \bar{\1}\bar{\1}\j\1 | |
| 199 | -\j\2\2\bar{\1} + \j\2\bar{\1}\bar{\2} + \j\2\bar{\1}\2 - \bar{\2}\j\bar{\2}\bar{\1} - \bar{\2}\j\2\bar{\1} + \bar{\2}\bar{\2}\j\bar{\1} | |
| 200 | -\j\2\2\1 + \j\2\1\bar{\2} + \j\2\1\2 - \bar{\2}\j\bar{\2}\1 - \bar{\2}\j\2\1 + \bar{\2}\bar{\2}\j\1 | |
| 201 | \k\1\1\bar{\1} - \bar{\1}\k\bar{\1}\1 - \bar{\1}\k\1\1 + \bar{\1}\bar{\1}\k\1 | |
| 202 | -\k\2\2\bar{\1} + \k\2\bar{\1}\bar{\2} + \k\2\bar{\1}\2 - \bar{\2}\k\bar{\2}\bar{\1} - \bar{\2}\k\2\bar{\1} + \bar{\2}\bar{\2}\k\bar{\1} | |
| 203 | -\k\2\2\1 + \k\2\1\bar{\2} + \k\2\1\2 - \bar{\2}\k\bar{\2}\1 - \bar{\2}\k\2\1 + \bar{\2}\bar{\2}\k\1 | |
| 204 | -\3\bar{\1}\bar{\2}\bar{\1} + \3\bar{\1}\2\1 + \3\bar{\1}\bar{\1}\bar{\2} + \bar{\2}\bar{\3}\1\bar{\1} - \1\3\2\bar{\1} - \1\bar{\2}\bar{\3}\bar{\1} | |
| 205 | -\3\bar{\1}\bar{\2}\1 + \3\1\2\1 + \3\1\bar{\1}\bar{\2} + \bar{\2}\bar{\3}\1\1 - \1\3\2\1 - \1\bar{\2}\bar{\3}\1 | |
| 206 | \4\bar{\2}\3\1 + \4\bar{\2}\bar{\1}\bar{\3} - \4\bar{\1}\bar{\3}\bar{\2} + \bar{\3}\bar{\4}\1\bar{\2} - \1\4\3\bar{\2} - \1\bar{\3}\bar{\4}\bar{\2} | |
| 207 | \4\2\3\1 + \4\2\bar{\1}\bar{\3} - \4\bar{\1}\bar{\3}\2 + \bar{\3}\bar{\4}\1\2 - \1\4\3\2 - \1\bar{\3}\bar{\4}\2 | |
| 208 | -\4\3\2\1 + \4\3\bar{\1}\2 + \4\3\1\2 + \bar{\3}\bar{\4}\2\bar{\1} - \2\4\3\bar{\1} - \2\bar{\3}\bar{\4}\bar{\1} | |
| 209 | -\4\bar{\2}\bar{\3}\1 + \4\1\3\2 + \4\1\bar{\2}\bar{\3} + \bar{\3}\bar{\4}\2\1 - \2\4\3\1 - \2\bar{\3}\bar{\4}\1 | |
| 210 | \3\1\2\bar{\2} - \bar{\2}\3\1\2 - \bar{\2}\bar{\1}\bar{\3}\2 + \bar{\1}\bar{\3}\bar{\2}\2 | |
| 211 | -\3\1\2\bar{\1} + \3\1\bar{\1}\bar{\2} + \3\1\bar{\1}\2 - \bar{\2}\3\1\bar{\1} - \bar{\2}\bar{\1}\bar{\3}\bar{\1} + \bar{\1}\bar{\3}\bar{\2}\bar{\1} | |
| 212 | -\3\1\2\1 + \3\1\1\bar{\2} + \3\1\1\2 - \bar{\2}\3\1\1 - \bar{\2}\bar{\1}\bar{\3}\1 + \bar{\1}\bar{\3}\bar{\2}\1 | |
| 213 | -\4\1\3\bar{\2} + \4\1\bar{\2}\bar{\3} + \4\1\bar{\2}\3 - \bar{\3}\4\1\bar{\2} - \bar{\3}\bar{\1}\bar{\4}\bar{\2} + \bar{\1}\bar{\4}\bar{\3}\bar{\2} | |
| 214 | -\4\1\3\2 + \4\1\2\bar{\3} + \4\1\2\3 - \bar{\3}\4\1\2 - \bar{\3}\bar{\1}\bar{\4}\2 + \bar{\1}\bar{\4}\bar{\3}\2 | |
| 215 | -\4\2\3\bar{\1} + \4\2\bar{\1}\bar{\3} + \4\2\bar{\1}\3 - \bar{\3}\4\2\bar{\1} - \bar{\3}\bar{\2}\bar{\4}\bar{\1} + \bar{\2}\bar{\4}\bar{\3}\bar{\1} | |
| 216 | -\4\2\3\1 + \4\2\1\bar{\3} + \4\2\1\3 - \bar{\3}\4\2\1 - \bar{\3}\bar{\2}\bar{\4}\1 + \bar{\2}\bar{\4}\bar{\3}\1 | |
| 217 | -\3\1\2\1 + \3\1\bar{\1}\2 + \3\1\1\2 - \2\3\1\bar{\1} - \2\bar{\1}\bar{\3}\bar{\1} + \bar{\1}\bar{\3}\2\bar{\1} | |
| 218 | -\4\1\3\2 + \4\1\bar{\2}\3 + \4\1\2\3 - \3\4\1\bar{\2} - \3\bar{\1}\bar{\4}\bar{\2} + \bar{\1}\bar{\4}\3\bar{\2} | |
| 219 | -\4\2\3\1 + \4\2\bar{\1}\3 + \4\2\1\3 - \3\4\2\bar{\1} - \3\bar{\2}\bar{\4}\bar{\1} + \bar{\2}\bar{\4}\3\bar{\1} | |
| 220 | \2\bar{\1}\2\1 + \2\bar{\1}\bar{\1}\bar{\2} - \2\1\2\bar{\1} - \bar{\1}\bar{\2}\2\bar{\1} | |
| 221 | \2\1\bar{\1}\bar{\2} - \bar{\1}\bar{\2}\2\1 | |
| 222 | \3\bar{\2}\3\1 + \3\bar{\2}\bar{\1}\bar{\3} - \3\1\3\bar{\2} - \bar{\1}\bar{\3}\3\bar{\2} | |
| 223 | \3\2\3\1 + \3\2\bar{\1}\bar{\3} - \3\1\3\2 - \bar{\1}\bar{\3}\3\2 | |
| 224 | -\3\3\2\1 + \3\3\bar{\1}\2 + \3\3\1\2 + \3\bar{\2}\bar{\3}\bar{\1} - \3\2\3\bar{\1} - \bar{\2}\bar{\3}\3\bar{\1} | |
| 225 | -\3\2\3\1 + \3\1\3\2 + \3\1\bar{\2}\bar{\3} - \bar{\2}\bar{\3}\3\1 | |
| 226 | \2\1\1\bar{\1} + \bar{\1}\bar{\2}\bar{\1}\1 - \bar{\1}\2\1\1 - \bar{\1}\bar{\1}\bar{\2}\1 | |
| 227 | -\3\2\2\bar{\1} + \3\2\bar{\1}\bar{\2} + \3\2\bar{\1}\2 + \bar{\2}\bar{\3}\bar{\2}\bar{\1} - \bar{\2}\3\2\bar{\1} - \bar{\2}\bar{\2}\bar{\3}\bar{\1} | |
| 228 | -\3\2\2\1 + \3\2\1\bar{\2} + \3\2\1\2 + \bar{\2}\bar{\3}\bar{\2}\1 - \bar{\2}\3\2\1 - \bar{\2}\bar{\2}\bar{\3}\1 | |
| 229 | -\3\2\2\1 + \3\2\bar{\1}\2 + \3\2\1\2 + \bar{\2}\bar{\3}\2\bar{\1} - \2\3\2\bar{\1} - \2\bar{\2}\bar{\3}\bar{\1} | |
| 230 | -\3\2\bar{\1}\bar{\2} + \3\2\1\2 + \3\bar{\1}\bar{\2}\2 + \bar{\2}\bar{\3}\2\1 - \2\3\2\1 - \2\bar{\2}\bar{\3}\1 |
Help
Generate Tools: Click "Generate Reduction Tools" to create reduction tools before you do everything.
Display Mode: Use the "LaTeX on" switch to toggle polynomial display. Excessive LaTeX can slow down rendering, so use it only when needed and switch back to plain text when done.
Current Polynomial: The line below "Result Table" shows the polynomial being reduced. If multiple polynomials are selected from the "S-Polynomials Irralated with Intervals" table, only one is visible at a time.
Reduction Controls:
- "Step": Reduces the polynomial by one step.
- "Continue": Reduces the polynomial until completion or if stuck. Displays the first 50 steps and every 1000th step by default (modifiable in the input box).
- "Apply": Clears the current polynomial and apply the one in the input text box.
- "Next": Clears the current polynomial and moves the next one in the queue forward.
Handling Steps: If you want more detailed steps, use the "Step" button. Note that the "Result Table" has a row limit (e.g., 340 rows) to prevent crashes. Adjust the "Continue step" value if needed.
Auto Reducing: The "Continue" button functions only when "Auto reducing" is on; otherwise, it acts like the "Step" button.
Full Form Display: The "Full form" switch toggles between showing only the leading term or the full polynomial.
| No. | Status | Polynomial |
|---|
Result Table
| Step | Result (For current step) | Reduction Tool (Used from previous to current step) | Lifted Reduction Tool (Actually used) |
|---|